The Brain’s Way of Healing

Norman Doidge

BACK TO TOP GO TO BOOK
CLOSE EXTRACT

Michael Moskowitz, M.D., is a psychiatrist-turned-pain-specialist who has often been forced to use himself as a guinea pig.

Burly, buoyant, and six feet tall, Moskowitz looks a decade younger than his sixty-odd years. He wears oval John Lennon glasses; has slightly long, graying curls of hair, a mustache, and a beatnik’s soul patch be- neath his lower lip. He smiles a lot. I first saw Moskowitz in Hawaii, where he was moderating a serious and sober panel at the American Academy of Pain Medicine. He was in a suit, but he seemed too big a personality, too boyish, to be wearing one. A few hours later, on the beach, he wore shorts and wild colors and was unconstrained, joking, bringing out the boyishness in me. We somehow got into a conversation about how physicians—so often interested in diagnostic categories, which are supposed to be like ideal forms, unvarying from person to person— can easily forget how different people really are. “Like me, for instance,” he said.

“How so?” I asked.

“My anatomy.” Whereupon he pulled off his Hawaiian shirt to proudly display that his chest bore not two but three male nipples.

“A true freak of nature,” I joked. “Does it do you any good?”

Like the medical students we once were, we plunged into a juvenile, jocular debate: because nipples on the male are useless, which of us was more useless, the one with two or the one with three? Thus we got ac- quainted, and everything about him—his love of singing and playing the guitar, his hugely engaging manner and youthful voice—suggested that he was still very much a creature of the happy-go-lucky world of love, music, and easygoing, carefree abandon of the 1960s in which he came of age.

Not so.

Moskowitz spends most of his time immersed in the chronic pain of others. Their agony is unknown to most people, in part because they are often so drained by their pain that they stop wasting what little en- ergy they have to express distress to those who can’t help them. Chronic pain may be invisible on a patient’s face, or it can give its victim a drawn, ghostly presence, because it sucks the life out of a person. Moskowitz, on the other hand, gets to share in its full burden. He and another psychiatrist-turned-pain-specialist, his long-standing southern friend Robert “Bobby” Hines, M.D., set up a pain clinic, Bay Area Medical As- sociates, in Sausalito, California, which treats West Coast patients with “intractable pain”: those who have tried all other treatments, including all known drugs, “nerve blocks” (regular anesthetic injections), and acupuncture. The patients who end up there failed to recover in all known mainstream and alternative treatments and have usually been told, “Everything that can be done for you has been done.”

“We are the end of the line,” Moskowitz says. “We are where people come to die with their pain.”

Moskowitz came to pain medicine after working for years as a psychiatrist. He has all the professional and scholarly credentials: he was on the examination council for the American Board of Pain Medi- cine (setting the exams for doctors in pain medicine); he is a former chairman of the education committee of the American Academy of Pain Medicine; and he has an advanced psychiatric fellowship in psy- chosomatic medicine. But Moskowitz became a world leader in the use of neuroplasticity for treating pain only after making some discoveries while treating himself.

 

On June 26, 1999, when he was forty-nine, Moskowitz and a friend snuck into the local San Rafael dump because he had heard that army tanks and other armored vehicles were being stored there for the Fourth of July parade. He couldn’t resist the boyish pleasure of climbing up onto a tank turret. When he jumped off, a metal prong for holding gas cans on the tank’s side caught his corduroys. As he fell, one leg shot up five feet, and he heard three popping sounds: his femur, the longest bone in the body, was cracking. When he looked down at his leg, he saw it was pointed way to the left, at a ninety-degree angle to the other leg. “I was a bit too old to be on tanks and a jeep. When I spoke afterward to a friend who was a personal injury lawyer, he said, ‘You would have a great case if you were seven.’”

As a pain physician, he used the situation to observe a phenomenon that he had taught his students about but had never experienced; it would become central to his neuroplastic research. Immediately after he fell, his pain was a true 10 out of 10—that is, 10/10, as pain physicians measure it. Pain is rated from 0/10 to 10/10 (10 is being dropped into boiling oil). He had never known whether he himself would be able to stand a true 10. He realized he could.

“The first thing I thought was: how will I get to work Monday?” he told me. “The second thing I realized, while lying motionless on the ground waiting for the ambulance, was that once I stopped moving, I had literally no pain at all. I thought, ‘Wow, this really does work! My brain simply shut off the pain—something I had been teaching my stu- dents for years. I had a firsthand experience that the brain, all on its own, can eliminate pain, just as I, a conventional pain specialist, had tried to do for patients by using drugs, injections, and electrical stimu- lation. As long as I didn’t move, the pain was zero within about a minute.

“When the ambulance came, they gave me six milligrams of IV morphine. I said, ‘Give me another eight.’ They said, ‘We can’t,’ and I said, ‘I’m a pain doctor,’ so they did, but when they moved me it was ten out of ten.”

The brain can shut pain off because the actual function of acute pain is not to torment us but to alert us to danger. True, the word pain comes from the ancient Greek poine, which means “penalty,” via the Latin poena, which means “punishment,” but biologically, pain is not punishment for punishment’s sake. The pain system is the hurt body’s implacable advocate, a reward and penalty signaling system. It penal- izes us when we are about to do something that might further damage our already injured body, and it rewards us with relief when we stop.

As long as Moskowitz didn’t move, he was in no danger, so far as his brain could tell. He also knew that the “pain” was never really in the leg itself. “All my leg did was send signals to my brain. We know from gen- eral anesthesia, which puts the higher parts of the brain to sleep, that if the brain doesn’t process these signals, there is no pain.” But general anesthesia has to render us unconscious to eliminate pain; here he was, lying in agony on the ground, and in one moment, his completely con‐ scious brain turned all his pain off. If only he could learn how to flip that switch for his patients!

But it wasn’t just movement that posed a danger for Moskowitz. While waiting for the ambulance, he nearly died, because he bled about half of his entire blood volume into his leg, so it ballooned to twice the normal size: “my leg was the size of my waist.” With all his blood pool- ing in his leg for hours, it was a miracle he didn’t die from insufficient blood supply to his vital organs. But he made it to the hospital, where “the surgeon put the largest plate they had into my leg and said that if they had needed one more screw, they would have had to amputate.”

During the surgery he almost died two more times. First he threw off an embolus—a blood clot—that could have lodged in his lungs or brain. Then the catheter implanted to drain his urine pierced his pros- tate, and he spiked a high fever and went into septic shock—a life- threatening condition in which the body is overwhelmed by infection. His blood pressure fell to 80/40.

Yet he survived—and learned another pain lesson: the wise use of sufficient morphine during his acute pain prevented his nerves from be- ing chronically stimulated and saved him from developing a chronic pain syndrome. (This was the reason he requested more morphine when his acute pain was not covered.) Despite the severity of the accident, as the years have passed, he has had very little pain in the leg, and he can walk, about a mile and a half, as we did along the beach in Hawaii, with- out experiencing pain.

The fact that the brain has the ability to turn pain off so suddenly goes against our “commonsense” experience that pain comes from the body. The traditional scientific view of pain, as formulated by the French philosopher René Descartes four hundred years ago, was that when we are hurt, our pain nerves send a one-way signal up to the brain, and the intensity of the pain is proportional to the seriousness of our injury. In other words, pain files an accurate damage report about the extent of the body’s injury, and that the role of the brain is to simply accept that report.

But that view was overturned in 1965, when the neuroscientists Ronald Melzack (a Canadian who studied phantom limbs and pain) and Patrick Wall (an Englishman who studied pain and plasticity) published the most important article in the history of pain, “Pain Mechanisms: A New Theory.” Wall and Melzack argued that the pain perception system is spread throughout the brain and spinal cord, and that the brain, far from being a passive recipient, controls how much pain we feel. Their “gate control theory of pain” proposed that when pain messages are sent from damaged tissue through the nervous system, they must pass through several controls, or “gates,” starting in the spinal cord, before they get to the brain. These messages ascend to the brain only if the brain gives them “permission” to do so, after determining whether they are important enough to be let through. (When President Reagan was shot through the chest in 1981, he initially just stood there, and neither he nor his Secret Service men knew he had been shot. As he later joked, “I had never been shot before, except in the movies. Then you always act as though it hurts. Now I know that does not always happen.”) If “permission is granted” for the signal to proceed to the brain, a gate will open and increase our feeling of pain by allowing certain neurons to turn on and transmit their signals. But the brain can also close a gate and block the pain signal by releasing endorphins, the narcotics made by our bodies to quell pain.

Before his accident, Moskowitz taught the latest versions of the gate theory to his residents, and that switches control the gates. But knowing such switches exist is one thing; knowing how to turn them off when you are lying in agony is another.

The Brain’s Way of Healing Norman Doidge